
1 
American Institute of Aeronautics and Astronautics 

  AIAA-99-4339 

A GENERIC OBJECT-ORIENTED IMPLEMENTATION FOR 
FLIGHT CONTROL SYSTEMS  

 
Patricia C. Glaab, Michael M. Madden*  

 
Unisys Corporation 

NASA Langley Research Center 
Mail Stop 125B 

Hampton, VA 23681 
 
 
 
Abstract      
 
This paper presents a design for a generic flight 
control system (FCS) architecture that breaks the 
control system into a coupled interaction of laws and 
devices with a standardized method for execution.  
Laws generally are computational components that 
generate commands as outputs, and any number of 
laws can be isolated and registered on a list in any 
order for execution.  Control devices are code 
components that receive the command inputs and use 
additional computations to generate device outputs, 
such as the servoactuator positions for the control of 
surfaces.  Any number of devices are allowable for a 
given flight control system and are registered in list 
format for execution.  This method allows for both 
simplistic FCS implementations and highly complex 
control systems without changing the architectural 
requirements of the high level executive. 
 
By separating the laws from the devices, special case 
handling required for control law bypassing (such as 
that required for direct-drive surface testing and 
linear analysis) is easily handled at the execution 
level.  No special code support is required internal to 
the laws. 
 
Introduction 
 
This paper presents a method for structuring flight 
control system code as part of an object-oriented 
simulation framework.  The design presented was 
developed at NASA Langley Research Center by 

                                                           
  Copyright  1998 by the authors.  Published by the     
American Institute of Aeronautics and Astronautics, 
Inc.  with permission. 

Unisys Corporation for use within the Langley 
Standard Real-Time Simulation in C++ (LaSRS++).  
The goals for the original design included several 
objectives.  The first objective was to develop a 
common software heirarchy that could effectively 
handle FCS requirements for different styles of 
aircraft.  The parent classes for the elements would 
reside in the simulation framework.  Ideally, this 
structure would simplify installation of new FCS 
models being added while providing a common 
execution style that only required one documentation 
effort. 
 
A second objective was to allow special FCS 
processing as part of the common executive.  
Specifically, direct manipulation of surface positions 
was required for linear analysis and open-loop 
checkcase matching.  This design was developed to 
allow this type of operation without embedding 
special handling instructions in the aircraft-specific 
FCS code. 
 
To achieve the solution,  an architecture was 
developed that reduces a given FCS to a collection of 
laws and devices and treats them as separate 
components.  Once this is done, the common 
elements in seemingly unique control systems 
becomes apparent.  The flexibility of the system is 
maintained through the use of variable length lists to 
control the laws and devices.  This method 
effectively accommodates aircraft with varying 
ranges of complexity and sizes of models. 
 
Design Objectives 
 
Aircraft that differ in both form and function 
necessarily have unique technical requirements for 
their  flight controls.  The differences between a  
military fighter aircraft FCS and that of a commercial 



2 
American Institute of Aeronautics and Astronautics 

transport at first inspection may seem more profound 
than the commonality.  Yet, in order to satisfy the 
design goal, a methodology that serviced each style 
effectively was required.  
 
In this paper, the implementations of an F16A and a 
Boeing 757 aircraft are used to demonstrate the 
application of the final design to two very different 
aircraft models.  The F16A simulation model uses a 
low-speed subset of that aircraft’s control laws.  The 
FCS outputs one signal for aileron, stabilator, leading 
edge flap, speedbrake, and rudder as required to 
interface to the supplied aerodynamics model.  The 
757 simulation model uses a full-envelope FCS 
model and supplies surface deflections for left and 
right ailerons, elevators, flaps, and slats, a single 
rudder and stabilizer, and twelve spoiler deflections 
as required for its aerodynamics model.  The 757 
uses a complex servoactuator model with hinge 
moments, hydraulic system options, and variable rate 
and position limits.  The F16A uses a simple first-
order servo calculation with fixed rate and position 
limiting.  The F16A computes its commands to 
surfaces using only a longitudinal, lateral, and 
directional control law.  The 757 also uses laws for 
the three axes, and additionally uses a high lift, a 
spoiler, and a yaw damper control law.  Yet both are 
very effectively modeled using the architecture 
described here.   
 
The approach used in the design of this FCS 
architecture was to ignore the specific type of 
surfaces (or devices) and the intricacies of generating 
the specific commands to drive them, and to reduce 
the level of complexity to a group of laws that act 
upon a group of devices.  In this way, the software is 
modeled similar to the actual aircraft.  In an actual 
aircraft, some combination of pilot inputs and 
synthesized signals from a flight control computer are 
fed to the control surface servos.  The actual 
deflection that results from the command may depend 
on the current aircraft states or environmental 
conditions, depending on the complexity of the 
simulation model.  The derivation of commands and 
the surface movements can be treated as separate 
entities. 
 
Once this separation of laws and devices is made, the 
similarities between very different styles of FCS 
become quite apparent. 
 
Laws 
 
A control law is the set of computations that provide 
a command as an output.  The internal computations 
may represent flight control computer modeling,  

mechanical linkages, etc.  Inputs to control laws are 
generally pilot inputs from the cockpit and aircraft 
state variables.  The outputs are the commands to the 
devices. 
 
Control laws may be loosely or tightly coupled, 
depending on the aircraft model.  In a very simplistic 
configuration (such as a general aviation aircraft 
without any autopilot), the laws may be simply the 
interaction of mechanical connections that transform  
pilot command inputs into commanded force or 
deflection outputs.  In a more complex model, a 
stability augmentation system or a flight control 
computer may generate or modify commands.   
 
This FCS class architecture design cares neither 
about the number of laws used nor the internal 
complexity. The parent ControlLaw class, which 
resides in the general framework, defines methods 
required by client aircraft-specific control law classes 
which inherit from it.  By maintaining a variable 
length list of laws, ControlSystem simply operates 
upon each law registered to it at the referenced 
location.  In the C++ implementation, the aircraft-
specific FCS instantiates the laws required and 
registers a pointer for each law during construction. 
 
ControlSystem contains a pure virtual function called 
execute() which must be specifically defined by each 
client control law.  Making the method pure virtual 
insures definition of the method within each client. 
During FCS processing, the control system executive 
steps through its list of registered laws and simply 
calls the execute() method for each.  Varying number 
of control laws are accommodated for different 
aircraft models with the same high level controller 
code. 
 
Devices 
 
A device is a software representation of what would 
be hardware on an actual airplane.  Surfaces are the 
primary type of device used, but a device can be any 
aircraft component that augments the flight.  Side-
thrusters would be another device example.  Inputs to 
devices are usually a command signal and state 
variables or environmental variables that effect the 
device’s movement. Most modern devices use some 
type of servoactuators to achieve output deflections. 
 
The flexibility for number and complexity of devices 
is maintained similarly by a variable length list 
maintained by the parent ControlSystem class.  In the 
C++ implementation, the aircraft-specific FCS 
instantiates the number and type of devices it requires 
for its model and registers a pointer for each to the 



3 
American Institute of Aeronautics and Astronautics 

device list at construction time.  The ControlDevice 
parent class, from which all control devices inherit, 
contains a pure virtual method called drive() which 
must be defined by each client device class.  During 
execution, the ControlSystem executive steps through 
its list of devices and calls the drive() method for 
each. 
 
Modeling of Common Behaviors 
 
The computational behaviors common to FCS code 
structure and execution are also contained within the 
parent ControlSystem class.  Every FCS must provide 
inputs to its laws, execute the laws, provide inputs to 
its devices, and drive them.  In the standard 
execution, these are done by the ControlSystem class.  
The ControlSystem, from which the aircraft-specific 
FCS inherits, defines the pure virtual methods 
directInputsToControlLaws() and 
directInputsToControlDevices().  These must be 

redefined by each airplane to fit the its own unique 
requirements.   
 
Additionally, the methods evaluateControlLaws() 
and driveControlDevices() are defined within the 
parent ControlSystem class and contain the code to 
step through the list of laws and devices.  These need 
not be refined at the aircraft-specific level.  They are, 
however, virtual methods that may be redefined if 
some unusual execution is required.   
 
One other method is provided as virtual by the 
ControlSystem class for use at the client’s discretion.  
The compositeDeviceCalculations() method is 
provided to compute combinations of device outputs 
required for other systems in the simulation.  For 
example, in the 757 aircraft, this method is used to 
compute slat_average and elevator_differential 
which are exported to the aerodynamics model and 
the data recording model.   
 

 
Figure 1- 757 FCS Class Structure 

 
 
Execution Options 
 
Since this methodology was developed to support 
special processing requirements for linear analysis 
and open loop checkcase matching, alternate 
processing  flexibility was built into the architecture 

at the parent class level.  A flag is provided by the 
ControlSystem class called open_loop.  When the 
open_loop flag is set true, an alternate method of 
execution is followed.  During open-loop processing, 
execution is defined in its entirety by the client 
aircraft control system via a virtual method called 



4 
American Institute of Aeronautics and Astronautics 

useTrimCommandsAsResponse().  Within the client’s 
version of this method, commands or deflections can 
be directly assigned as necessary for special 
handling. The executive section is simply defined in 
useTrimCommandsAsResponse(), and the open_loop 
flag set true. 
 
Inheritance Structure 
 
Figures 1 and 2 show the inheritance structure for the 
757 commercial transport and the F16A military 
fighter within the generic FCS architecture.  The top-
most boxes on each diagram represent the framework 
classes: ControlSystem, ControlDevice, ControlLaw 
and Aircraft.  Here the B757 executive class, which 
inherits from Aircraft, has 21 control surfaces and 5 

control laws to generate its model.  The F16A, by 
comparison, only uses three control laws and five 
control surfaces to define its FCS model. The pure 
virtual methods, evaluate() and drive(), initially 
defined in the ControlLaw and ControlDevice classes 
respectively, are redefined in the aircraft-specific 
classes which inherit from them. Pure virtual classes 
directInputsToControlDevices() and 
directInputsToControlLaws(), initially defined in 
ControlSystem, are redefined for the aircraft-specific 
control system classes.  Since each aircraft requires 
combined surface outputs, each redefines the 
compositeDeviceCalculations() method.  Neither, 
however, defines evaluateControlLaws() or 
driveControlDevices() which are handled entirely by 
the parent class, ControlSystem. 

 
 
 
 
 
 
 
 

Figure 2 - F16a FCS Class Structure



5 
American Institute of Aeronautics and Astronautics 

Object Interaction 
 
Figure 3 and 4 show the interaction of the objects 
during closed-loop operation for the Boeing 757 and 
F16A aircraft simulations.  At construction time, the 
client control system instantiates the number and type 
of laws and devices it requires and registers a pointer 
to each to the list of laws contained in ControlSystem.  
The order of registration dictates the order of 
execution used later for each law and device by the 
ControlSystem class.  The client aircraft, as part of its 

execution process, tells ControlSystem to 
applyControls().  The applyControls() method within 
ControlSystem calls directInputsToControlLaws(), a 
pure virtual method defined at the client control 
system level.  The directInputsToControlLaws() 
method in the client control system sets inputs 
required for each control law that it uses.  This input 
processing usually involves gathering  state variables 
from other parts of the client aircraft and sending 
them to the passive control law objects.   

 
 



6 
American Institute of Aeronautics and Astronautics 

Figure 3  - 757 Object Interaction Diagram 

 
Figure 4 - F16A Object Interaction Diagram 

 
 
The applyControls() method then calls 
evaluateControlLaws() which simply steps through 
its list of control laws and calls evaluate() for each.  
The evaluate() method is defined in the parent 
ControlLaw class as a pure virtual function, and must 
be redefined by each specific control law that inherits 
from it.  All technical code required to compute the 
command output is contained in the evaluate() 

method within the clients control laws or in local 
scope methods called by it. 
 
Similar processing is then performed by the 
ControlSystem class for device calculations.  The 
directInputsToControlDevices() method is defined at 
the client control system level and sets inputs 
required for each control device used.  This input 



7 
American Institute of Aeronautics and Astronautics 

processing usually involves gathering commands 
from the control laws and additional aircraft state 
variables from other simulation objects and updating 
the input data within each device object.   
The driveControlDevices() method in ControlSystem 
is called which steps through the list of registered 
devices and instructs the drive() method to be 
executed for each one. 
 
Finally, the compositeDeviceCalculation() method is 
called to compute required output combinations for 
other parts of the simulation. 
 
Note that even though the number and type of laws 
and surfaces differ for the two aircraft, the execution 
methodology and the code structure for the classes 
remains the same.   
 
Conclusions 
 
The initial design and testing phase for this flight 
control system architecture (as is usual for 
sophisticated and reliable object-oriented 
development), required a substantial effort on the part 
of the developer.  This method was first used for the 
757 simulation model. Before this architecture was 
installed, the 757 FCS code was encumbered with 
switch statements and branch “if” testing because of 
the extensive amount of special processing required 
for that particular project.  The code was very fragile 
and had become almost indecipherable.  After the 
757 control system was revamped to fit this generic 
method, the code was highly robust and instantly 
comprehensible by anyone willing to familiarize 
themselves with the architecture. 
 
Since its inception, three other aircraft have used the 
architecture with extensive time saving both in 
testing and validation of the code and in the design 
review documentation requirements.  Testing and 
coding for these aircraft was practically limited to the 
installation of their technical equations and inputs to 
them.  Linear analysis capability was effectively free. 
The development effort was easily justified in this 
instance, if not absolutely required, for the 757 model 
to be maintainable through its projected life span.  
Smaller control systems that capitalized on the effort 
would probably not have expended the initial 
development effort unless a large amount of special 
processing was expected in that project’s life.   
 
A common method of class structure and execution 
for a framework, however, is a large motivator.  
Installation and testing of control systems, previously 
handled exclusively by experienced simulation 
developers, is now effectively accomplished by 

relatively new developers in the LaSRS++ 
framework.  The conclusion is that the initial testing 
and development effort is highly recommended for 
several situations: 
 
- when the complexity of one particular model 

compromises the code’s readabilty 
- when many aircraft share a common framework 
- when the responsibility for code maintenance 

will be handled by changing personnel over the 
project’s life span 

 

 
Bibliography 

[1] Erich Gamma, Richard Helm, Ralph Johnson, 
and John Vlissides. Design Patterns:  Elements 
of Reusable Object-Oriented Software.  
Addison-Wesley, Reading, Massachusetts, 1995. 

[2] Steve McConnell.  Code Complete:  A Practical 
Handbook of Software Construction.  Microsoft 
Press, Redmond, Washington, 1993. 

[3] Terry Quatrani.  Visual Modeling With Rational 
Rose and UML.  Addison-Wesley,  Reading, 
MA, 1998. 

[4] Scott Meyers.  Effective C++.  Addison-Wesley, 
Reading, Massachusetts, second edition, 1998. 

[5] Grady Booch.  Object-Oriented Analysis and 
Design.  Benjamin/Cummings, Redwood City, 
California, 1994. 

[6] R. Leslie, D. Geyer, K. Cunningham, M. 
Madden, P. Kenney, P. Glaab.  LaSRS++:  An 
Object-Oriented Framework for Real-Time 
Simulation of Aircraft.  AIAA-98-4529, 
Modeling and Simulation Technology 
Conference, Boston, MA, August 1998. 

 

 

 
 
 


	AIAA-99-4339
	A GENERIC OBJECT-ORIENTED IMPLEMENTATION FOR FLIGHT CONTROL SYSTEMS
	Laws
	Devices
	Modeling of Common Behaviors
	Execution Options
	Inheritance Structure
	Object Interaction
	Conclusions


